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The shock-expansion method and Whitham’s rule 
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The assumptions of the shock-expansion method are re-examined. Although the 
shock-expansion method and Whitham’s rule are used to treat two different 
classes of problems, certain similarities between these two methods are noted. 
It is suggested that a single procedure leads to solutions for the entire flow field 
for both classes of problems. 

1. Introduction 
Whitham (1958) has suggested a simple rule in order to determine the motion 

of a shock wave through regions of non-uniform area or flow. The rule is to apply 
the differential relation which is valid along a characteristic to the flow quantities 
just behind the shock wave. This relation plus the Rankine-Hugoniot conditions 
across the shock are then sufficient to determine the motion of the shock for a 
large but restricted class of problems. The accuracy of the results is extremely 
good. Whitham applies the results to several examples, of which a typical 
illustration is the propagation of a shock wave down a tube with variable cross- 
sectional area. This problem was studied previously by Chester (1954) and 
Chisnell(1957), who obtained the same results but in a more complicated manner. 

No basic reason is given for the rule except that it works ! But Whitham does 
suggest that the method is related in some way to the shock-expansion method. 
The shock-expansion method treats a somewhat different class of problems. 
Typical ones are: (1) the steady, two-dimensional supersonic flow over an airfoil 
and (2) the unsteady, one-dimensional propagation of a shock wave caused by 
a piston with variable speed. 

In the present paper, the assumptions basic to the shock-expansion method 
are re-examined and the method of solution is stated in a slightly different 
manner from that previously used. This same formulation can be used to study 
shock propagation in a non-uniform region. It reduces to Whitham’s rule a t  the 
shock front and in addition suggests a method of calculating the entire flow field. 
The method is only applicable when disturbances are propagated predominantly 
along one set of characteristics, a limitation implicit in both the shock-expansion 
method and Whitham’s rule. 

2. Shock-expansion method 
Although the shock-expansion method is applicable to both steady two- 

dimensional flows and unsteady one-dimensional flows, only the latter will be 
discussed here. The same analysis can be applied to the two-dimensional case. 
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The basic equations for the one-dimensional time-dependent flow of an inviscid, 
non-conducting perfect gas are 

a 
at ax 
2 + - ( p u )  = 0, 

au au 1 ap 
-+u-+-- = 0,  
at ax pax 

aq5 aq5 -+u- = 0, 
at ax 

where u, p, p ,  and @ are the velocity in the x-direction, density, pressure, and 
entropy, respectively. The equation of state is p = pRT, and the isentropic speed 
of sound is defined as a2 = (aplap), = yRT, where y is the ratio of specific heats. 

The above equations can be combined in the usual way to form the charac- 
teristic relations, which can be written as 

dp +pa du = 0 on C, characteristics, dxldt = u +a; (2.4) 

dp -pa du = 0 on C- characteristics, dxldt = u - a;  (2.5) 

dp - a2dp = 0 on P, particle path lines, dxldt = u. (2.6) 

An alternative way of writing these equations which is sometimes convenient is 

where 

a 
dr - d @ = O  on C,, 

2(Y - 1) c p  

a ds - d @ = O  on C-, 

dq5 = 0 on P, 
Z(Y - 1) cp 

(2.11) 

As an example of the application of the shock-expansion method, consider the 
time-dependent, one-dimensional motion of a piston accelerated from rest with 
non-zero initial velocity (see figure 1). A shock is formed instantaneously and, 
because the gas is at rest in t < 0, the gas ahead of the shock is motionless and 
in a uniform state. Disturbances originating from the piston surface and due to 
the variable motion of the piston propagate along positive C+ characteristics. 
These disturbances are partly absorbed by the shock (the speed of which is 
altered) and are partly reflected. The reflected waves propagate along negative 
C- characteristics and eventually influence the pressure on the piston surface. 

Epstein (1931) first suggested a simplified method to determine the flow field 
and, in particular, the pressure on the piston. In  his method, the initial velocity 
of the shock and the properties immediately behind the shock are calculated 
from the usual Rankine-Hugoniot conditions across a shock. The calculations are 
extended to the entire flow field by assuming that the flow behind the leading- 
edge shock is the same as that in an isentropic Prandel-Meyer expansion. In  this 
approximation, one characteristic parameter, say s, is constant throughout the 
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flow field, and r and therefore p ,  p, and u are consta,nt along the positive C+ 
characteristics. Another way of saying this is that $ is assumed constant and 
then equation (2.5) (or equation (2.8)) is applied throughout the flow field and not 
only on a negative characteristic. 

FIGURE 1. The (2, t )  diagram for propagation of a shock wave caused by variable speed 
piston. Positive Characteristics are denoted by C,, negative characteristics by C-, and 
particle path lines by P. 

Eggers & Syvertson (see Eggers, Syvertson & Kraus 1953) have improved the 
shock-expansion method by taking into account an approximation for the non- 
isentropic character of the flow field. Their method may be restated as follows: 
Retain the characteristic equations valid along particle path lines P and along 
positive characteristics C,, equations (2.4) and (2.6). The conditions at  the piston 
surface may be calculated by using equation (2.6) and by assuming that equation 
(2 .5)  is valid for a fluid particle at the piston surface. The rest of the flow field can 
be calculated by using equation (2.4) and by assuming that equation (2.5) is valid 
on positive characteristics. From this it can be seen that p and u are constant 
along positive characteristics, although entropy and other variables are not. 
The use of both approximations (p and u constant along C,) at the shock gives 
slightly different results. Either one or the other (or the average (Eggers et ul.)) 
can be used. 

The results of this method are extremely good and the time required is quite 
small by comparison with that needed for the solution by the method of 
characteristics. 

The neglect of the C- relations implies the neglect of reflexions. However, as 
can be seen above, the assumption used to replace this relation is not unique. 
Still other assumptions are possible, as will be seen below. 

The excellent results obtained by the shock-expansion method imply that the 
basic approximation is valid, i.e. equation ( 2 . 5 )  is approximately valid along a 
particle path line at the piston surface and also approximately valid along 
positive characteristics. Since any particle path line can be interpreted as a 
possible piston curve, it follows that equation (2 .5 )  is approximately true along 
any particle path line. This result is substantiated by the numerical calculations 
of Mahoney (1955). 
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Indeed, another way of determining the flow field, equivalent in accuracy to 
the shock-expansion method, is to use equations (2.4) and (2.6) and apply 
equation (2.5) along a streamline (or use equations (2.7) and (2.9) and apply 
equation (2.8) along a streamline). The variation of s along the shock is needed 
and can be obtained from the Rankine-Hugoniot shock conditions. This relation 
can also be replaced by equation (2.8). This approximation was first noticed and 
used by Pillow (1949), but in a different manner. The approximation involved 
can be seen readily for a weak shock by comparing ds/d$ along a shock and ds/d$ 
as given by equation (2.8). For a weak shock with velocity U and Mach number 
M = U/a,, where 6 = M 2 -  1 < 1, the shock conditions give 

From equation (2.12), (2.13) and (2.8) it  follows that 

(2.12) 

(2.13) 

(2.14) 

to a first approximation. For y = Q, this is exactly one, but the approximation is 
less accurate as y -+ 1. 

Since equation (2.5) (and equation (2.8)) is approximately valid along a particle 
path line and along a positive characteristic, it  is approximately true throughout 
the ffow field. 

3. Whitham’s rule 
Since the shock-expansion method gives such good results, it seems natural to 

attempt other problems using the same procedure. To illustrate the extension, 
consider a shock propagating down a tube of variable area A ( x )  with constant 
flow conditions ahead of the shock. This problem has been studied previously 
by Whitham (1958), Chester (1960), and Chisnell(1957). It is assumed that A(x)  
is constant for x < 0 (see figure 2) and that the shock moves with constant 
velocity in this region. For x > 0 the area of the tube changes with distance, as 
must the shock velocity. As the shock velocity changes, disturbances propagate 
along the negative characteristics and interact (1)  with the entropy changes 
across particle path lines (contact discontinuities), and (2) with area changes. 
The contact discontinuities also interact with the area changes. These interactions 
cause waves which then interact with the shock. 

The appropriate equations of motion are 

g+-(pu)+--=O, a pu dA -+u-+--= a~ au 1 ap 0, %+u- a$ = O .  (3.1),(3.2),(3.3) 
at ax A dx at ax pax at ax 

The characteristic relations can be written as 

dp+podu+{pa%/(u+a)}(dA/A) = 0 on C,, dx/dt = u+a, (3.4) 
dp-padu+{pa2u/(u-a)}(dA/A) = 0 on C-, dx/dt = u-a,  (3.5) 

dp-a2dp = 0 on P, dx/dt = u. (3.6) 
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FICIJRE 2. The (2, t )  diagram for the propagation of a shock wave into a tube of 
variable area. 

In this problem, the major disturbances are transmitted along the negative 
characteristics and the positive characteristics carry relatively little information. 
To extend the shock-expansion method as stated above, equations (3.5) and (3.6) 
are used and it is assumed that equation (3.4) is approximately true throughout 
the flow. Themotionof theshockcan be found by applying equation (3.4) along the 
shock and using the Rankine-Hugoniot shock conditions. This is just Whitham’s 
rule. It has been verified that this result is extremely accurate for (1) weak shocks 
(Chester), and (2) strong shocks in a converging channel (Guderley 1942). 

In addition, the entire flow field can be calculated by this method. Comparison 
with the exact method of characteristics has not yet been made. However, a 
limited check of the assumption that equation (3.4) is approximately true 
throughout the flow can be obtained from the linearized theory (first investigated 
by Chester). Upon linearization, equation (3.4) becomes 

~ P + ~ 1 ~ 1 ~ ~ + ~ ~ 1 ~ 2 , ~ 1 / ~ ~ 1 + ~ 1 ~ ~  (dA/Al )  = 0 (3.7) 
on each C,. But each C, characteristic starts in a uniform region, where p = p , ,  
p = p l ,  etc., and therefore, upon integration, the above equation becomes 

(3.8) 

Upon differentiation, this equation is identical in form with equation (3.7), but 
is now valid throughout the flow. Therefore, within the linearized approximation, 
this confirms the original conjecture. 

P -P1 +Plal(u-  u1) + { P l a W ( ~ l  +a,))  ( A  - 4 / A l  = 0. 

4. Conclusion 
From these foregoing arguments, it  is suggested that a single procedure is 

sufficient to solve both classes of problems mentioned above. This procedure is 
to use the characteristic relations valid along the particle path lines and the 
principal characteristics. The third relationship that is required is obtained from 
the statement that the equation which is strictZy valid only along a minor 
characteristic is approximately true throughout the flow field. 
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The limitations to the method can be seen from the following: The equation 
along a characteristic gives information on disturbances travelling along the 
characteristic. When the minor characteristic equation is replaced, as suggested 
above, the disturbances travelling along the minor characteristics can no longer 
be described adequately. In  particular, reflexions of the major disturbances, 
which travel along minor characteristics, and any disturbances originating at  the 
boundaries and travelling along minor characteristics are neglected. Distur- 
bances propagating along major characteristics are accounted for properly. 

In the variable-area problem, the procedure is not applicable, for instance, 
if ( 1 )  disturbances are caused at x = 0 by a piston with variable speed, or if ( 2 )  
the disturbances propagating along negative characteristics modify the distur- 
bances propagating along positive characteristics to an appreciable extent. 
A particular example for which the present method is invalid is the Taylor blast 
wave problem, i.e. a strong shock wave propagating into an expanding channel. 
For a spherical shock wave caused by a finite amount of energy released instan- 
taneously at  a point, Taylor (1950) shows that the shock velocity Uis proportional 
to R-8, where R is the distance from the origin. Whitham’s rule gives U pro- 
portional to 

In general, the accuracy of the method depends on the cancellation of reflected 
waves. Hayes & Probstein (1959) and Meyer (1960) give a discussion of this 
cancellation for the first problem treated above. Chester (1960) gives a discussion 
for the second problem. Further discussions of the limitations and accuracy of 
the shock-expansion method based on comparisons with numerical calculations 
are given by Eggers, Syvertson & Kraus (1953). 

(for y = 1.4). 
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